Какими особенностями обладают двигатели с переменной степенью сжатия

Система от SAAB

Первыми воплотили мечту в жизнь инженеры фирмы SAAB и в 2000 году на выставке в Женеве выставили на всеобщее обозрение экспериментальный двигатель с системой Variable Compression.

Этот уникальный двигатель имел мощность в 225 л.с., при объеме 1,6 л., а расход топлива был в вдвое меньшим аналогичного объема. Но самое фантастичное, он мог работать и на бензине, и на спирте, и даже на дизельном топливе.

Изменение рабочего объема двигателя осуществлялось бесшагово. Степень сжатия изменялась при наклоне моноблока (совмещенная головка блока с блоком цилиндров) относительно блока-картера. Отклонение моноблока вверх приводило к уменьшению степени сжатия, отклонение вниз — к увеличению.

Смещение по вертикальной оси на 4 градуса, что позволило иметь сжатия от 8:1 до 14:1. Управление изменением степени сжатия, в зависимости от нагрузки, осуществлялось специальной электронной системой управления по средством гидропривода. При максимальной нагрузке СЖ 8:1, при минимальной 14:1.

Так же в нем применялся механический наддув воздуха, он подключался только при наименьших значениях степени сжатия.

Но не смотря на такие удивительные результаты, двигатель не пошел в серию, и работы по доводке на сегодняшний день свернуты по неизвестной нам причине.

Факторы, влияющие на показатель политропы сжатия

Среднее значение показателя политропы сжатия n1 зависит от конструкции двигателя и режима его работы. При одинаковой средней скорости движения поршня в двигателях с большими линейными размерами показатель n1 будет больше, так как у этих двигателей меньше относительная площадь соприкосновения единицы объема заряда со стенками цилиндра. Поэтому относительный отвод тепла в больших двигателях — меньше, что выражается в более высоком показателе n1.

У двигателей с разделенными камерами сгорания относительная площадь поверхности теплообмена больше, чем у двигателей с камерами неразделенными. Интенсивный теплообмен между зарядом и стенками цилиндра в период пуска приводит к снижению n1 и ухудшению пусковых качеств. При снижении n1 уменьшаются параметры конца сжатия Pс, Tс температура в цилиндре может не достичь уровня, требуемого для самовоспламенения топлива.

Поэтому в предкамерных и вихрекамерных двигателях обычно предусматриваются специальные устройства для пуска. В дальнейшем, после пуска двигателя, эти устройства отключаются, так как показатель n1 повышается за счет подвода тепла к заряду от раскаленной вставки внутри цилиндра.

Конструктивные мероприятия, направленные на снижение температуры цилиндро-поршневой группы — охлаждение поршней водой или маслом, уменьшение толщины стенок поршня, втулки, крышки, любые другие меры по интенсификации охлаждения — снижают величину среднего значения показателя n1, уменьшают параметры конца сжатия Pс и Tс. При этом снижается и термический КПД цикла. Однако основная цель упомянутых мероприятий — повышение надежности работы цилиндропоршневой группы.

С увеличением частоты вращения двигателя показатель n1 возрастает, так как уменьшается продолжительность теплообмена между зарядом и стенками цилиндра, процесс сжатия приближается к адиабатному. При снижении частоты вращения происходит обратное явление — показатель n1 уменьшается, снижаются давление Pс и температура Tс, что может привести к нарушению самовоспламенения топлива.

При снижении нагрузки двигателя (уменьшении среднего индикаторного давленияОпределение среднего индикаторного давления Pi) снижается температурный уровень стенок цилиндра, что приводит к увеличению теплоотвода от заряда к стенкам и к снижению показателя n1.

В условиях эксплуатации с понижением частоты вращения главного двигателя, работающего на винт, уменьшается и нагрузка. Оба фактора одновременно воздействуют в сторону интенсификации теплообмена при сжатии, что уменьшает показатель n1 и снижает параметры конца сжатия Pс и Tс. Особенно неблагоприятны последствия этого явления при не прогретом двигателе, когда возможна работа лишь на повышенных минимальных оборотах коленчатого вала. При снижении частоты вращения двигатель «глохнет».

При нормальных эксплуатационных условиях протечки свежего заряда через неплотности цилиндропоршневой группы при сжатии незначительны. Их влиянием на показатель n1 и параметры Pс, Tс можно пренебречь. Изменение степени сжатия также незначительно влияет на среднее значение политропы сжатия.

Экспериментальные исследования показали, что средние значения показателя политропы сжатия у различных двигателей находятся в пределах:

  • n1 = 1,34 — 1,37 — у мапооборотных и среднеоборотных ДВС с охлаждаемыми поршнями;
  • n1 = 1,38 — 1,42 — у высокооборотных ДВС с неохлаждаемыми поршнями.

Наибольшие значения n1 имеют двигатели, в цилиндре которых размещены специалные аккумуляторы тепла (раскаленные вставки). В этих двигателях показатель n1 может доходить до 1,8.

Среднее значение показателя n1 может быть найдено по известным параметрам работающего дизеля, исходя из формулы политропного процесса:

Pa /Pc = (Vc /Va )n1

Откуда:

n1 = 1g (Pa /Pc )/1g (Vc /Va ) = 1g(Pc /Pa)/1g ε

Текущие значения n1 можно найти, имея индикаторную диаграмму, снятую с работающего цилиндра. Разбив диаграмму на отдельные участки и определив давления на их границах, для каждого участка находится n1i:

η 1 i = 1 g ( P i + 1 / P i ) 1 g ( V i + 1 / V i )

Как увеличить степень сжатия двигателя

Если необходимо увеличить данный показатель, используют несколько способов:

  • расточка блока и установка поршней с большим диаметром;
  • уменьшение объёма камеры сгорания путём удаления слоя металла в месте соединения ГБЦ.

Интересно, что лучше всех раскрыли потенциал степени сжатия ДВС японские производители. В то время как европейские автокомпании пошли путём усовершенствования гибридных моторов, японцам удалось увеличить ССД до 14 единиц и на бензиновых силовых агрегатах, применив изменяемую величину. Но как это возможно без детонационных моментов? Всё оказалось просто. Оказывается, нужно охладить камеру, где происходит возгорание. Тогда можно будет без опасения сжимать смесь. И вовсе не обязательно для этого использовать прохладный воздух: достаточно модернизировать систему выпуска.

Приём, давно известный ещё по гоночным движкам. Выпускные каналы меняются согласно схеме 4-2-1. Порции выхлопных газов здесь не мешаются, поочерёдно вылетают в трубу. Благодаря такой чёткой системе выхлопа, улучшается продувка цилиндров, где остаётся меньше горячих газов.

Однако для реализации данного метода нужно будет еще модернизировать газообмен, раскошелившись на фазовращатели обоих распредвалов. Вдобавок потребуется доработать некоторые моменты. К примеру, изменить длину поршневого хода посредством компьютерного вмешательства.

Применяется система изменяемого коэффициента на многих японских движках, например, для Inflniti. Способность автоматически менять этот показатель сжатия в зависимости от нагрузки позволяет значительно повышать КПД мотора, особенно турбированного. Каждая порция смеси сгорает при оптимальном на данный момент работы сжатии. Так, если нагрузки на мотор незначительные и смесь обеднённая, включается максимальное сжатие. И наоборот, в нагруженном режиме задействуется минимальная степень, так как бензина впрыскивается много и возможна детонация.

Курс на увеличение степени сжатия двигателя наблюдался и в середине 20 века в США. Основная масса американских двигателей, выпущенных в 70-е годы, находилась в пределах 11-13 единиц. Но работали они только на очень качественном, высокооктановом топливе, получаемом путём этилирования. После того как этилирование запретили, в серийных образцах ДВС наблюдалось снижение показателя сжатия.

Конструкции двигателей

Первый двигатель видеомагнитофона был построен и испытан Гарри Рикардо в 1920-е гг. Эта работа привела к тому, что он разработал октановое число система, которая все еще используется сегодня. Многие компании проводят собственные исследования двигателей видеомагнитофонов, в том числе Saab, Nissan, Вольво, PSA /Пежо -Citroën и Renault. Infiniti QX50 2019 доступен с серийной версией двигателя с регулируемым сжатием с турбонаддувом.

Peugeot MCE-5

Принцип МСЭ-5 («Многоцикловый двигатель — 5 параметров»), двигатель с переменной степенью сжатия производства Пежо.

Конструкция Peugeot основана на изменении эффективной длины шатунов, соединяющих поршень с кривошипом. Чем короче шатун, тем ниже степень сжатия и наоборот. В левой части диаграммы показан обычный поршень двигателя внутреннего сгорания. Справа гидроцилиндр с поршнем двустороннего действия. Это действует через систему стержень-кривошип с зубчатым колесом, движение которого регулирует эффективную длину шатуна и, следовательно, степень сжатия в левом цилиндре.

Saab SVC

Автомобиль SAAB возродили интерес к сжатию переменных, когда они представили SVC двигатель для мира на автосалоне в Женеве в 2000 году. Компания SAAB принимала участие в работе с «Офисом передовых автомобильных технологий» над созданием современного бензин Двигатель видеомагнитофона, который показал эффективность, сопоставимую с эффективностью Дизель. В SAAB SVC был передовым и работоспособным дополнением к миру двигателей видеомагнитофона, но он так и не был запущен в производство из-за банкротства компании.

Дизайн, реализация двигателя видеомагнитофона Ларсена, состояла из моноблочной головки, в которой находилась вся шестерня клапана, и узла коленчатый вал / картер. Эти части были соединены шарниром, который допускал 4 степени перемещения, контролируемые гидравлическим приводом. Этот механизм позволяет изменять расстояние между центральной линией коленчатого вала и головкой цилиндра. В отличие от конструкции Peugeot, эффективная длина шатуна является фиксированной. Для достижения необходимого времени отклика и высокого давления наддува был выбран компрессор, а не турбонагнетатель.

Чтобы изменить Vc, SVC «опускает» крышка цилиндра ближе к коленчатый вал. Это достигается путем замены типичного цельного блока цилиндров двигателя на состоящий из двух частей, с коленчатым валом в нижнем блоке и цилиндрами в верхней части. Два блока навесной вместе на одной стороне (представьте книгу, лежащую на столе, с передней обложкой, расположенной на дюйм или около того над титульным листом). Поворачивая верхний блок вокруг точки петли, Vc (представьте, что воздух между передней обложкой книги и титульным листом) можно изменить. На практике SVC регулирует верхний блок в небольшом диапазоне движений, используя гидравлический привод.

Технология видеомагнитофонов Gomecsys (состояние 2012 г.)

Коленчатый вал Gomecsys Gen4 VCR для 4-рядного двигателя

Gomecsys — это голландская инженерная компания, которая разработала собственную технологию переменной степени сжатия. За последние 5 лет были внесены существенные улучшения, и в настоящее время компания использует двигатели видеомагнитофонов 4-го поколения, работающие на стенде. Одно из больших преимуществ системы — простота. Полная система видеомагнитофона встроена в коленчатый вал, и каждый 4-тактный двигатель можно модернизировать, заменив обычный коленчатый вал на коленчатый вал Gomecsys VCR. Дополнительные технологии экономии топлива, включенные в систему, увеличивают общее сокращение выбросов CO2 до 18%, и это без уменьшения размеров.[нужна цитата ]

Infiniti VC-Turbo

Infiniti VC-Turbo — это рядный четырехцилиндровый двигатель с турбонаддувом, в котором используется механическое соединение для изменения степени сжатия. Привод приводится в действие электрическим шаговым двигателем, который вращает нижний распределительный вал. Распределительный вал перемещает тягу, которая прикрепляется к рычагу с тремя отверстиями и вращает его. Центральное отверстие содержит коленчатый вал, а последнее отверстие прикрепляется к шатуну. Перемещение тяги вверх опускает шатун, увеличивая степень сжатия. здесь, из-за противоположного направления силы, действующей на нижний распределительный вал и со стороны шатуна, это уменьшает вибрацию. Таким образом, промежуточный вал уменьшается, а масса нижнего распределительного вала и штока распределительного вала электродвигателя добавляет массу в двигатель.

Как узнать какой двигатель установлен в автомобиле

Информация о том, что в машине установлен именно двигатель с технологией переменной степени сжатия, расположена на самом транспортном средстве — это наклейка на окно и экран в мультимедиа системе. На экране будущие и настоящие владельцы могут лицезреть положение системы переменного сжатия. Зачем это сделано? С точки зрения повседневной эксплуатации, как уже обсуждалось в нашем обзоре Infiniti QX50, — непонятно. Руководители Nissan утверждают, что никакого специального обслуживания не потребуется. Ну да, конечно, так мы и поверили.

Механики автосервисов знают, что реальные условия использования автомобилей далеки от лабораторных, и проблемы могут накапливаться.  Особенно когда некоторые клиенты предпочитают покататься со светящимся индикатором двигателя — «check engine» в течение нескольких месяцев, вместо срочного посещения автосервиса. Думаю, что VC-Turbo не простит подобного халатного отношения к себе и своим высокотехнологичным системам.

Виды турбокомпрессоров

Турбина с перепуском отработавших газов WGT.

В горячей улитке турбокомпрессора есть клапан Вестгейт (wastegate) выпускающий выхлопные газы в обход ротора турбины, для того чтобы ограничить рост давления турбокомпрессора выше заданного значения. Вследствие этого поток газов через турбину уменьшается, что снижает как степень сжатия воздуха турбиной, так и излишне высокие обороты вращения вала турбокомпрессора. При низких нагрузках на двигатель клапан закрывается, и весь поток отработавших газов направляется в турбину.

Турбина с изменяемой геометрией турбины VNT.

Турбина с изменяемой геометрией ТИГ (Variable-Nozzle Turbine — VNT, Variable-Turbine Geometry — VTG, Variable-Geometry Turbo — VGT) отличается от классических турбокомпрессоров наличием кольца из специальных лопастей (лопаток). Это дает возможность управлять потоком отработанных газов через турбину.
На малых оборотах двигателя лопатки находятся в полузакрытом состоянии. Выхлопным газам приходится «протискиваться» в узкие проходы между лопаток. Скорость газа возрастает (закон Бернулли) и он быстрее раскручивает турбину.
На повышенных оборотах двигателя
лопатки открываются. Сечение для прохода газов увеличивается, скорость падает, турбина крутится медленнее.

Турбина с дросселированием VST.

В двигателях легковых автомобилей небольшой мощности нашли применение турбины с золотниковым регулированием (VST Variable Sliding Turbine). Турбина VST работает аналогично турбине с неизменной геометрией, с той разницей, что первоначально открывается один из двух каналов золотника. При достижении максимально допустимого давления наддува золотник, непрерывно перемещаясь в осевом направлении, открывает второй канал. Каналы выполнены так, чтобы наибольшая часть потока отработавших газов направлялась к турбине. Оставшаяся часть отработавших газов, за счет дальнейшего перемещения регулирующего золотника, направляется в обход крыльчатки компрессора внутри турбонагнетателя.

Турбина с Twin-scroll (Твинскролл ) – двойная улитка.
Турбина типа «twin-scroll» отличается от обычной наличием двух каналов, разделяющих надвое рабочую камеру турбины. Таким образом, отработавшие газы подаются на турбину раздельно, за счет чего эффективнее используется импульсный наддув.

За счет чего достигается преимущество?
На четырехтактном двигателе порядок работы цилиндров (например у ЗМЗ-409) 1-3-4-2. Представим, что цилиндр 1 заканчивает свой цикл и достигает нижней точки, открывается выхлопной клапан. В то же время, цилиндр 2 заканчивает выхлопной цикл, закрывая выхлопной клапан и открывая впускной клапан. При наличии обычной одиночной турбины, давление выхлопа от цилиндра 1 будет препятствовать забору воздуха цилиндра 2, поскольку оба выхлопных клапана открыты. Так вот, если камеры разделить, проблема разрешится.
Вдобавок, в последнее время появились турбины с изменяемым Twin-scroll: на входе улитки турбины установлен распределительный клапан (Quick Spool Valve), который перенаправляет поток выхлопных газов в разные каналы. А если учесть, что у разных каналов разная геометрия то мы фактически получаем универсальную, управляемую турбину, которая хорошо работает и на низких и на высоких оборотах двигателя.

Твинскролл турбокомпрессор Borg Warner EFR-7163-J (VTV) с интегрированным QSV клапаном (с изменяемой геометрией)

Двигатель VC-Turbo вновь пополнил свою коллекцию наград

Двигатель VC-Turbo, первый в мире серийный ДВС с изменяемой степенью сжатия, продолжает пополнять свою и без того впечатляющую коллекцию наград, призов и достижений. На этот раз уникальный силовой агрегат оценило жюри премии «Международный двигатель года» (The International Engine + Powertrain of the Year Awards).

272-сильный мотор был отмечен сразу в двух категориях «Двигатели мощностью 250-350 л.с.» и «Новая разработка». Истинно революционный по конструкции VC-Turbo самостоятельно изменяет степень сжатия в диапазоне от 8:1 (для достижения максимальной мощности) до 14:1 (для наилучшей экономичности). Кроме того, двигатель может работать при любом значении степени сжатия в указанном диапазоне, в зависимости от выбранного режима движения и стиля вождения.

В состав жюри премии «Международный двигатель года» входят около семи десятков автомобильных журналистов из 31 страны, что само по себе подчеркивает глобальное признание технологии VC-Turbo.

Некоторые представители прессы даже сравнили двигатель VC-Turbo со Священным Граалем автомобильной инженерии. В INFINITI революционную технологию изменяемой степени сжатия рассматривают как очередной шаг в естественном переходе бренда на электрифицированные силовые агрегаты.

Новый двигатель дебютировал на новом поколении премиального кроссовера INFINITI QX50, который помимо прочего интересен совершенно новой платформой, ярким дизайном и невероятным по меркам класса простором в салоне.

2-литровый мотор VC-Turbo — результат более чем 20-летней кропотливой работы инженеров Nissan Motor Co. На протяжении всего проекта было изготовлено свыше 100 рабочих прототипов революционного силового агрегата. В один момент работа над проектом даже застопорилась. Мощностей тогдашних компьютеров оказалось недостаточно для окончательной проверки всех мыслимых расчетов и финализации конструкции. Когда же компьютерные технологии сократили отставание от инженерного гения конструкторов Nissan Notor Co., новый мотор VC-Turbo из мечты превратился в реальность.

Интересные факты о двигателе VC-Turbo:

1996 — Начало работы над двигателем с изменяемой степенью сжатия;
2016 — Год дебюта серийной версии мотора VC-Turbo;
2018 — На рынке дебютировал новый INFINITI QX50 – первый серийный автомобиль с мотором VC-Turbo;
От 8:1 до 14:1 — Диапазон изменения степени сжатия двигателя VC-Turbo;
-20дБ В — сравнении с традиционным четырехцилиндровым мотором, VC-Turbo генерирует на 20 дБ меньше шума и вибраций;
+100 — Количество изготовленных прототипов двигателя VC-Turbo;
30 000 часов — Испытаний на тестовом стенде;
3 000 000 км — Пробег автомобилей с двигателем VC-Turbo в условиях испытательных заездов.

Краткая информация об INFINITI:

Бренд INFINITI был создан в США в 1989 году со штаб-квартирой в Гонконге. На сегодняшний день INFINITI имеет представительства на 50 рынках по всему миру. На российском рынке бренд представлен с 2006 года, и в 2016 году отметил свое десятилетие в России.

Весь модельный ряд INFINITI производится на заводах в Японии, США, Мексике, Великобритании.

Дизайн-студии INFINITI расположены в Ацуги-Ши, недалеко от Иокогамы, Лондоне, Сан-Диего и Пекине.

С 2016 года INFINITI является техническим партнером гоночной команды Формулы 1 Renault Sport и занимается разработкой гибридных систем для гоночных автомобилей.

Преимущества

Бензиновые двигатели имеют ограничение на максимальное давление во время такта сжатия, после которого топливно-воздушная смесь взрывается, а не горит. Для достижения более высокой выходной мощности при той же скорости необходимо сжечь больше топлива и, следовательно, больше воздуха. Для достижения этой цели, турбокомпрессоры или же нагнетатели используются для увеличения давления на входе. Это привело бы к детонации топливно-воздушной смеси, если бы степень сжатия не уменьшилась, то есть объем над поршнем не увеличился. Это может быть сделано в большей или меньшей степени, при этом возможно значительное увеличение мощности. Обратной стороной этого является то, что при небольшой нагрузке двигателю может не хватать мощности и крутящего момента. Решение состоит в том, чтобы иметь возможность изменять давление на входе и регулировать степень сжатия в соответствии с требованиями. Это дает лучшее из обоих миров: небольшой эффективный двигатель, способный при необходимости вырабатывать большую мощность. Кроме того, видеомагнитофон позволяет бесплатно использовать различные виды топлива помимо бензина, например, LPG или этанол.

Рабочий объем цилиндра изменяется с помощью гидравлической системы, соединенной с коленчатым валом, и регулируется в соответствии с требуемой нагрузкой и ускорением.

Турбокомпрессоры VTG в двигателях VW фактически являются модифицированными дизельными агрегатами.

Циклы Аткинсона и Миллера всегда вызывают ассоциацию для увеличения эффективности, но между ними часто нет никакой разницы. Возможно, это не имеет смысла, потому что оба изменения сводятся к фундаментальной философии — созданию различных степеней сжатия и расширения в четырехтактном бензиновом двигателе. Поскольку эти параметры геометрически идентичны в обычном двигателе, бензиновый агрегат страдает от опасности детонации топлива, требующей снижения степени сжатия. Однако, если более высокая степень расширения может быть достигнута каким-либо образом, это привело бы к более высокому уровню «выдавливания» энергии расширяющихся газов и увеличило бы эффективность двигателя. Интересно отметить, что чисто исторически ни Джеймс Аткинсон, ни Ральф Миллер не создавали свои концепции в поисках эффективности. В 1887 году Аткинсон также разработал запатентованный комплексный кривошипно-шатунный механизм, состоящий из нескольких элементов (сходство можно найти сегодня в двигателе Infiniti VC Turbo), задачей которого было избежать патентов Отто. Результатом сложной кинематики является реализация четырехтактного цикла в течение одного оборота двигателя и другого хода поршня в процессе сжатия и расширения. Спустя много десятилетий этот процесс будет осуществляться путем сохранения впускного клапана открытым в течение более длительного периода времени и почти без исключения используемого в двигателях в сочетании с обычными гибридными силовыми установками (без возможности внешней электрической зарядки), такие как у тойоты и хонды. На средних и высоких скоростях это не проблема, потому что поток вторжения имеет инерцию, и когда поршень движется назад, он компенсирует возвратный воздух. Однако на низких скоростях это приводит к нестабильной работе двигателя, и поэтому такие агрегаты объединяются с гибридными системами или не используют цикл Аткинсона в этих режимах. По этой причине безнаддувные и впускные клапаны условно считаются циклом Аткинсона. Однако это не совсем правильно, потому что идея реализации различных степеней сжатия и расширения путем управления фазами открытия клапанов принадлежит Ральфу Миллеру и была запатентована в 1956 году. Однако его идея не направлена ​​на достижение большей эффективности, и снижение степени сжатия и соответствующего использования низкооктановых топлив в авиационных двигателях. Миллер разрабатывает системы как с более ранним закрытием впускного клапана (Раннее закрытие впускного клапана, EIVC), так и с более поздним закрытием его (Позднее закрытие впускного клапана, LIVC), а также для компенсации недостатка воздуха или сохранения воздух, возвращающийся во впускной коллектор, используется компрессор.

Интересно отметить, что первый такой двигатель с асимметричными фазами, работающий на более позднем, определенном как «процесс цикла Миллера», был создан инженерами Mercedes и использовался в 12-цилиндровом компрессорном двигателе спортивного автомобиля W 163 с 1939 года. до того, как Ральф Миллер запатентовал свое испытание.

Первой серийной моделью, в которой использовался цикл Миллера, была Mazda Millenia KJ-ZEM V6 1994 года. Впускной клапан закрывается позже, возвращая часть воздуха во впускные коллекторы со степенью сжатие практически снижается, и для удержания воздуха используется механический компрессор Lysholm. Таким образом, степень расширения на 15 процентов больше, чем степень сжатия. Потери, вызванные сжатием воздуха от поршня к компрессору, компенсируются улучшенной конечной эффективностью двигателя.

Стратегии с очень поздним и очень ранним закрытием имеют разные преимущества в разных режимах. При низких нагрузках более позднее закрытие имеет то преимущество, что оно обеспечивает более широкую открытую дроссельную заслонку и поддерживает лучшую турбулентность. По мере увеличения нагрузки преимущество смещается в сторону более раннего закрытия. Однако последнее становится менее эффективным на высоких скоростях из-за недостаточного времени наполнения и большого перепада давления до и после клапана.

Мировая премьера: двигатель INFINITI VC-Turbo

Второе поколение INFINITI QX50 вышло на рынок в 2021 году. Модель изменилась не только внешне. Производитель выбрал платформу с поперечно установленным мотором, бесступенчатую трансмиссию и революционный четырехцилиндровый двигатель VC-Turbo объемом 2 л и мощностью 249 л. с. INFINITI QX50 стал первым в мире автомобилем, оснащенным ДВС с переменной степенью сжатия.

В зависимости от режима движения блок управления двигателем INFINITI выбирает оптимальный уровень сжатия и меняет ход поршня. Так производится плавное переключение между коэффициентами 8:1 и 14:1. На минимальном значении мотор обеспечивает высокую мощность и крутящий момент. Автомобиль способен разогнаться до 100 км/час за 7,3 секунды. Большой коэффициент говорит о сниженном расходе топлива.

Динамика мотора 2.0 сопоставима с характеристиками более объемных шестицилиндровых установок. При этом агрегат обладает рядом уникальных преимуществ. Среди них:

  • снижение вибрации на 20 дБ;
  • экономия топлива до 30 %, по сравнению с машинами первого поколения (в среднем расход составляет 8,6 л на 100 км);
  • снижение выброса вредных веществ;
  • уменьшение трения поршня о стенки цилиндра на 44 %.

Уже сегодня можно лично оценить эффективность и мощь двигателя нового INFINITI QX50. Обратитесь к официальному дилеру INFINITI на Ленинском или на Ленинградском шоссе, чтобы получить больше информации и записаться на тест-драйв.

Практический расчет методом проливки

Суть измерения заключается в поочередном заполнении жидкостью площади над поршнем, когда тот находится в верхней мертвой точке, и стенок камеры сгорания ГБЦ. Для измерения нам необходим кусок оргстекла, в котором будут пропилены отверстия для вкручивания болтов ГБЦ и отверстие для заливки жидкости. Между оргстеклом и блоком необходимо установить уже использованную (обжатую) прокладку. Стенки цилиндров для увеличения гидроплотности необходимо смазать густой консистентной смазкой (литиевой либо обычным солидолом).

Притянув оргстекло болтами, заполните образовавшейся объем жидкостью. Объем поместившейся воды будет соответствовать объему надпоршневого пространства. Аналогичный тест проводится и с головкой блока. При этом клапана должны быть притерты, между седлами и тарелками нанесена консистентная смазка. Сумма объема залитых жидкостей и будет объемом камеры сгорания.

Чтобы рассчитать степень сжатия на онлайн-калькуляторе, также будет необходимо измерить величину хода поршня и диаметр цилиндра. Все эти значения помогут вычислить объем двигателя, который изменяется при каждой фрезеровке плоскостей БЦ, ГБЦ, установке поршней иной геометрической формы, расточки цилиндров либо установке других шатунов, коленчатого вала.

Особенности конструкции

Принципиально отдельные узлы и системы двигателей не отличаются от аналогов, но некоторые конструктивные решения достаточно оригинальны.

Система турбонаддува

Основной особенностью стало применение на части двигателей двойного наддува, но не с большой и малой турбинами, как это иногда делается, а добавкой механического нагнетателя.

  • отсутствие наддува при минимальной нагрузке, компрессоры отключены, воздух идёт через обходной клапан;
  • подключение только механического компрессора, не обладающего инерцией и хорошо справляющегося при средних нагрузках;
  • совместная работа роторного нагнетателя с турбиной при переходе к значительным нагрузкам, что устраняет даже малейшие признаки турбоямы;
  • отключение компрессора и работа турбины на полной мощности при максимальных нагрузках.

Такая гибкость позволяет сохранять максимальную эффективность и минимум аэродинамических потерь в тракте во всём диапазоне оборотов и крутящего момента, выравнивая его полку на внешней скоростной характеристике двигателя.

В последнее время появились достаточно эффективные турбины с изменяемой геометрией и малой инерционностью, что позволило отказаться от достаточно дорогого и массивного механического компрессора.

Система охлаждения

Высокое давление наддува требует охлаждения поступающего в цилиндры воздуха. При его нагреве уменьшается стойкость двигателя к детонации и ухудшается экономичность из-за меньшей плотности горячего газа на впуске. Поэтому в двигателях используется интеркулер – дополнительный радиатор с жидкостным теплообменником.

Подобное решение почти повсеместно применяется в дизельных двигателях, не менее уместно оно и в высокоэффективных бензиновых ДВС.

Система впрыска

Бензин распыляется прямо в цилиндры через многоточечные форсунки, что обеспечиваем хорошую гомогенизацию смеси. Чем выше давление впрыска, тем этот процесс эффективней, поэтому используются инжекторы и топливный насос очень высокого давления, до 150 атмосфер.

Направление факела всех отверстий в форсунках ориентировано на днище поршня, что позволяет осуществлять послойное смесеобразование за счёт отражения потока и направления его к свече зажигания. Изменение момента впрыска реализует все прочие выше перечисленные режимы.

Блок цилиндров

Существуют разные версии блоков, в том числе и более прочные чугунные, но в последнее время используются алюминиевые блоки с запрессованными чугунными гильзами.

Такие решения применяются и во многих других моторах, не всегда удачно. Дело в том, что уменьшение толщины стенок гильз для улучшения теплоотдачи ведёт к короблению и задирам.

Не во всех двигателях семейства эту проблему удалось полностью решить, особенно при использовании коротких поршней с минимальными потерями на трение, но это беда почти всех современных двигателей.

Можно «разогнать» его?

Это важный вопрос для приверженцев чип-тюнинга, которые хотят, к примеру, сделать n55b30 conversion s55b30. Мюнхенское подразделение известно тем, что намеренно занижает показатели новых двигателей. Прибегая к кустарному методу, можно обойти заводскую защиту, прибавив к показателю мощности еще 10-15 «лошадок», но здесь возникает вопрос: а стоит ли?

Учитывая, насколько требователен и капризен S55B30 swap в эксплуатации и как сильно он нуждается в техническом обслуживании, не стоит рисковать с чип-тюнингом

Если же вы профессиональный гонщик и вам необходимо повысить показатели динамики и увеличить скорость, то примите во внимание другой фактор. S55B30 весьма легок: масса составляет 205 килограмм, что стало возможным, благодаря облегченному корпусу

Еще один вариант – свап. Примером служит замена турбины или другого компонента. Это открывает возможности для дополнительных модификаций и, как следствие, увеличения показателей скорости.

Когда появились моторы TSI (расшифровка)

Впервые эти двигатели были анонсированы в 2004 году, как замена ранее применявшейся линейке FSI – Fuel Stratified Injection, что означает послойный прямой впрыск бензина.

TSI означает примерно то же самое, но с наддувом, вначале это был Twinturbo Stratified Injection, подразумевая сложную систему двойного наддува, но потом от неё стали постепенно отходить, и более традиционно расшифровывать аббревиатуру, как просто Turbo Stratified Injection.

Двигатели постоянно модернизируются, ошибок было сделано много, что породило невероятно широкую линейку моторов, объединённых единым торговым обозначением TSI. У других компаний подобные же двигатели называются иначе, но сути дела это не меняет.

Линейка двигателей TSI

VAG постарался перевести на данные моторы практически всю свою автомобильную продукцию, используя их в своих марках Volkswagen, Audi, Skoda и SEAT.

Конкретных исполнений великое множество, отличаются они по ряду конструктивных особенностей и показателей:

  • рабочий объём 1,0, 1,2, 1,4, 1,5, 1,8, 2,0 и 3,0 литра;
  • мощность от 90 л.с. до 350 и выше, в вариантах спец исполнения на премиальных машинах;
  • наличие одной обычной турбины, двойного наддува с дополнительным механическим компрессором, турбины с изменяемой геометрией;
  • количество и расположение цилиндров от трёх в ряд до конфигурации V6;
  • цепной или ременный привод механизма газораспределения;
  • построение системы впрыска с разной степенью гомогенизации смеси;
  • рабочий цикл двигателя с разным принципом фазирования.

Общий принцип, тем не менее, во всех моторах соблюдается, это наличие наддува и возможность работать с послойной организацией впрыска. Двигатели прошли в своём развитии по разным оценкам от трёх до четырёх поколений.

Из всего многообразия моторов линейки можно выделить несколько наиболее популярных:

  • CAXA – объёмом 1,4 л, представитель уже устаревшего поколения EA111, ставился на Golf 5 и прочие соплатформенные автомобили, имел одну турбину без компрессора, развивал 122 л.с., запомнился массой проблем с цепью привода ГРМ, стуком поршней и большим потреблением масла;
  • CZDA – тот же объём, уже новое поколение EA211, где многие недостатки устранены, применена другая турбина, два фазовращателя, мощность увеличена до 150 л.с., алюминиевый блок, соответствует нормам Евро-6, выпускается до сих пор, но планируется замена на принципиально новую линейку с циклом Миллера;
  • CJSA – мощный мотор объёмом 1,8 л. семейства ЕА888 3 поколения, ставился на Skoda, Volkswagen, SEAT, Audi с поперечным расположением ДВС, развивал 180 л.с., отличался дополнительными форсунками во впускном коллекторе;
  • CHHB – ещё более мощный двухлитровый двигатель, развивающий 220 л.с., с чугунным блоком и интегрированным в головку впускным коллектором, применялся в Golf GTI 7 поколения, Tiguan и многих Audi;
  • BLG – образец высокофорсированного мотора 1,4 л., поколения EA111, обладавший совместно установленными турбиной и механическим компрессором, благодаря чему развивал 170 л.с. при уверенной тяге на всех оборотах.

Следует заметить, что концерн обладает удивительной особенностью изменять буквенное обозначение двигателей при малейших изменениях, ориентированных на увеличение или снижение мощности, экологический стандарт и даже рынок сбыта. Поэтому вариаций двигателей образовалось великое множество, хотя некоторые практически не отличаются.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Мастер Иван Глазунов
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: